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Abstract

This paper completes a study of Amabili and Garziera [2000, Vibrations of circular cylindrical shells with

nonuniform constraints, elastic bed and added mass; Part I: empty and fluid-filled shells. J. Fluids Struct. 14, 669–690;

2002a, Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part II: shells

containing or immersed in axial flow. J. Fluids Struct. 16, 31–51; 2002b, Vibrations of circular cylindrical shells with

nonuniform constraints, elastic bed and added mass; Part III: steady viscous effects on shells conveying fluid. J. Fluids

Struct. 16, 795–809] by adding the effect of rotary inertia of added masses to the DIVA code, based on the

Rayleigh–Ritz method and developed to study free vibrations of circular cylindrical shells with nonuniform boundary

conditions, added masses, partial elastic bed, initial pre-stress, conveying flow or immersed in axial flow. The effect of

rotary inertia has also been evaluated by commercial FEM software and experiments in order to validate the DIVA

code. Calculations and experiments show that the effect of rotary inertia of added masses is generally negligible, except

for additional local modes; this is in contrast with what has been found for thin plates, due to the geometric stiffness of

the circular cylindrical shell.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The effect of lumped masses on vibrations of circular cylindrical shells has been studied by many authors in the past

for the important engineering applications involved; see, e.g., Leissa (1973), Soedel (1993), Amabili (1996), Amabili and

Garziera (2000). In the present study, the additional effect of rotary inertia of added masses is considered, and this effect

has been added to the computer program DIVA (Amabili and Garziera, 2000, 2002a, b), previously developed by the

authors, in order to study free vibrations of circular cylindrical shells with nonuniform boundary conditions, conveying

or immersed in flowing fluids, and subjected to pre-stress and nonuniform elastic bed.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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2. Theoretical approach of DIVA code

A cylindrical coordinate system (O; x, r, y) is introduced, with the origin O at the centre of the shell edge. The circular

cylindrical shell has radius R, length L and uniform thickness h, and the displacement of a point on the mean surface in

the axial, angular and radial directions is indicated by u, v and w, respectively. The mode shapes of the shell are

expanded by using a base involving all the natural modes of the simply supported shell vibrating in vacuo. The

boundary conditions of the simply supported shell are Nx ¼Mx ¼ v ¼ w ¼ 0 for x ¼ 0 and x ¼ L, where Nx is the

axial force and Mx is the bending moment per unit length. In particular, a symmetric system with respect to the angular

coordinate y ¼ 0 is assumed. Therefore, symmetric and antisymmetric modes with respect to this axis will be

considered. The symmetric modes are expanded as
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where anmj are the unknown coefficients involved in the mode expansion, Anmj and Bnmj are the mode shape coefficients

(note that normalization of the radial displacement to 1 gives a very high value, theoretically N, to Bnmj for the

axisymmetric mode (n ¼ 0) with prevalent angular displacement; in the numerical implementation, it is sufficient to use

a large value), n, m and j indicate the number of circumferential waves, the number of axial half-waves and the mode

number, respectively. In particular, the mode number j ¼ 1, 2, 3 denotes modes with prevalent radial, angular and axial

displacements, respectively. In fact, it is well-known (Leissa, 1973) that the frequency equation of a simply supported

shell is given by the following bi-cubic equation:

O6
nmj � K2O4

nmj þ K1O2
nmj � K0 ¼ 0, (2)

which has three roots Onmj for any given values of n and m; these roots correspond to j ¼ 1, 2, 3. The coefficients K0, K1

and K2 are given, e.g., in Amabili and Garziera (2000) for the Flügge theory of shells, and depend on the values of n and

m. In Eq. (2), Onmj is the frequency parameter, defined as

O2
nmj ¼ o2

nmjR
2rSð1� n2Þ=E, (3)

where onmj is the corresponding circular frequency, rS is the shell mass density, E is Young’s modulus and n is the

Poisson ratio. The mode shape coefficients Anmj and Bnmj are computed by a linear system that is reported, e.g., in

Amabili and Garziera (2000) for the Flügge theory of shells. The antisymmetric modes with respect to y ¼ 0 are

expanded as
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In the case where the system loses its symmetry with respect to y ¼ 0, the following mode expansion must be considered:
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The reference kinetic energy T�S of the shell, in the general case of expansion (5), is given by
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The use of admissible functions, that are the natural modes of a less-constrained problem, allows an interesting

simplification, as observed by Amabili and Garziera (1999). In fact, the maximum potential energy VS of the shell can

be obtained as the multiplication of the reference kinetic energy of a natural mode in the less-constrained problem by

the corresponding eigenvalue o2
nmj (the squared circular frequency) of the shell and by the coefficients anmj or bnmj, and
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then adding all the products. The result is
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In Eq. (7), the orthogonality of the eigenfunctions of the less-constrained problem has been used.

The maximum potential energy V ~k stored by the elastic distributed springs, which simulate the flexible axial

translational constraint at x ¼ 0, L, is given by

V ~k ¼
1

2
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In Eq. (8), ~kðyÞ is the nonuniform spring stiffness (N/m2) that is assumed to be the same at x ¼ 0 and x ¼ L. For

simplicity, ~kðyÞ is assumed to be symmetric with respect to y ¼ 0, and it can be expanded into the following cosine

series:

~kðyÞ ¼
X1
k¼0

~kk cosðkyÞ. (9)

From now on, the system is assumed to be symmetric with respect to y ¼ 0. This hypothesis simplifies the calculations

without loss of generality and can easily be removed.

The maximum potential energy Vc stored by the elastic distributed rotational springs, that simulate the flexible

rotational constraint at x ¼ 0, L, is given by
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In Eq. (10), cðyÞ is the nonuniform rotational spring stiffness (N) that is assumed to be the same at x ¼ 0 and x ¼ L.

Similarly to ~kðyÞ, cðyÞ is assumed to be symmetric with respect to y ¼ 0; it can be expanded into the following cosine

series:

cðyÞ ¼
X1
k¼0

ck cosðkyÞ. (11)

It is interesting to note that a fully clamped shell is obtained by setting a uniform and very high value to the stiffnesses

of the translational and rotational springs ~k and c. The values of the spring stiffnesses simulating a clamped shell can be

obtained by trial and error or by evaluating the edge stiffness of the shell. In fact, it was found that the natural

frequencies of the system converge asymptotically to those of a clamped shell when ~k and c become very large.

A system of M lumped masses Ml (kg) at x ¼ x�l , y ¼ y�l is considered. The reference translational kinetic energy of

the added mass is given by
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As done for the boundary conditions, a symmetric distribution of added masses with respect to y ¼ 0 is assumed. For

symmetric modes, introducing Eq. (1) into Eq. (12) one obtains
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For antisymmetric modes one obtains
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The reference rotary kinetic energy of the added masses is given by
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where Jx,l and Jy,l are the moment of inertia of the mass l with respect to an axis parallel to x and to v, respectively,

passing by the mean shell surface at mass location x ¼ x�l , y ¼ y�l . For symmetric modes, introducing Eq. (1) into

Eq. (15) one obtains
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For antisymmetric modes one obtains
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The Rayleigh quotient for the problem studied is given by

O2 ¼
VS þ V ~k þ Vc

T�S þ T�M þ T�MR

, (18)

O being the circular frequency (rad/s) of the system. The effect of fluid–structure interaction is added to Eq. (18) as

shown by Amabili and Garziera (2000, 2002a, b). Only a finite number of modes in the Rayleigh–Ritz expansion are

retained in numerical computations. The matrix q of the Ritz coefficients is introduced,

qnmj ¼
anmj for symmetric modes; n ¼ 0; . . .N; m ¼ 1; . . . ~N; j ¼ 1; 2; 3;

bnmj for antisymmetric modes; n ¼ 1; . . .N; m ¼ 1; . . . ~N j ¼ 1; 2; 3:

(
(19)

In Eq. (19) the expansion of symmetric and antisymmetric modes involves 3�N � ~N (3� ðN þ 1Þ � ~N for symmetric

modes) terms; N and ~N must be chosen large enough to give the required accuracy.

The problem is solved minimizing the Rayleigh quotient, Eq. (18), which leads to the following Galerkin equation:

½rShðL=2ÞKS þ K ~k þ Kc�q� O2½rShðL=2ÞMS þ ðM=RÞðMM þMMRÞ�q ¼ 0, (20)

where matrices KS, K ~k, Kc, MS, MM and MMR are easily obtained by the expression of potential and reference kinetic

energies.
3. Numerical results

Calculations have been performed by using (i) the DIVA code (Amabili and Garziera, 2000, 2002a, b) modified to

include rotary inertia, as described in Section 2; (ii) the commercial FEM program ANSYS. Numerical results have

been carried out for a shell having the following dimensions and material properties: L ¼ 0:52m, R ¼ 0:1494m,

h ¼ 0:519mm, E ¼ 198� 109 Pa, r ¼ 7850 kg=m3 and n ¼ 0:3. The shell has been considered simply supported at the

shell edges and four different configurations of added masses with rotary inertia have been considered. The first two

cases are for one added mass (0.205 kg) at x1 ¼ L=4 with small (90.36� 10�6 kgm2) and large (1.191� 10�3 kgm2)

rotary inertia. Natural frequencies are presented in Tables 1 and 2, respectively. With respect to the case with neglected

rotary inertia, two additional low-frequency modes appear. They are local modes because the movement is practically

only rotation of the added mass. Except for these local modes, that require a huge number of terms in the

Rayleigh–Ritz expansions used in the DIVA code in order to reach convergence, the agreement between DIVA and

FEM results is quite good. In fact, the DIVA code, based on global discretization by using the Rayleigh–Ritz, is not

efficient in describing very localized modes, which obviously require an extremely large number of terms in the Fourier

expansions in order to be accurately described. Table 2 shows the convergence of DIVA code with the number of modes

in the expansion, revealing that with N ¼ 24 and ~N ¼ 44 local modes are still far from convergence.
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Table 2

Natural frequencies of the shell with one mass of M1 ¼ 0.205 kg, Jy;1 ¼ Jx;1 ¼ 1:191� 10�3 kgm2 placed at x1 ¼ L/4

Mode DIVA, N ¼ 24, ~N ¼ 44 (Hz) DIVA, N ¼ 29, ~N ¼ 49 (Hz) FEM (Hz) Experiments (Hz)

1 A (local) 27.05 24.83 12.33 —

2 S (local) 37.43 33.55 13.80 —

3 S 132.42 130.97 127.29 151.8

4 A 215.85 215.58 214.12 —

5 S 220.25 220.17 219.96 217.6

6 A 232.96 232.44 230.25 —

7 S 242.30 241.98 241.17 240.5

8 A 265.04 264.84 263.90 —

9 S 273.12 272.94 272.51 270.0

10 A 288.25 287.65 285.21 —

Comparison of calculations with DIVA, commercial FEM code ANSYS and experiments (only symmetric modes). A ¼ antisymmetric

modes; S ¼ symmetric modes.

Table 1

Natural frequencies of the shell with one mass of M1 ¼ 0.205 kg, Jy;1 ¼ Jx;1 ¼ 90:36� 10�6 kgm2 placed at x1 ¼ L/4

Mode DIVA (Hz) FEM (Hz) Experiments (Hz)

1 A (local) 89.27 44.75 —

2 S (local) 121.23 50.08 —

3 S 131.52 127.29 152.7

4 A 215.86 214.15 —

5 S 220.17 219.96 217.2

6 A 232.89 230.28 —

7 S 241.99 241.17 240.6

8 A 264.97 263.91 —

9 S 272.95 272.51 269.6

10 A 287.98 285.23 —

Comparison of calculations with DIVA with N ¼ 29 and ~N ¼ 49, commercial FEM code ANSYS and experiments (only symmetric

modes). A ¼ antisymmetric modes; S ¼ symmetric modes.
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The other two cases studied are for two identical added masses (0.232 kg) at x1 ¼ x1 ¼ L=2 (i.e. in the middle of the

shell) and y1 ¼ 0:1396 rad, y2 ¼ �0:1396 rad, with medium (0.218� 10�3 kgm2) and large (2.26� 10�3 kgm2) rotary

inertia. These two cases are different with respect to the previous ones, where symmetric modes were not affected by

rotary inertia for symmetry reasons. In these two cases, reported in Tables 3 and 4, four additional local modes appear,

due to the presence of two masses. Also in these cases, except for local modes, the agreement between DIVA and FEM

results is quite good. The first eight mode shapes for the shell with two masses and large rotary inertia computed with

DIVA are given in Appendix A and compared to experimental results.

The four cases numerically studied here correspond to the experiments reported in the next section.

Table 5 gives the natural frequencies of the shell with two identical added masses (0.232 kg) at x1 ¼ x1 ¼ L=2 and

y1 ¼ 0:1396 rad, y2 ¼ �0:1396 rad, with zero, medium (0.218� 10�3 kgm2) and large (2.26� 10�3 kgm2) rotary inertia.

Excluding local modes, the case of zero rotary inertia presents the lowest natural frequency for each mode; the highest

frequency is obtained for medium rotary inertia, which is slightly reduced for large rotary inertia. However, the

maximum difference in frequency in the three cases is less than 5Hz, giving around 4% of difference. It must be

observed that, increasing the number of terms in the expansion used in the DIVA code, this difference in frequency

decreases significantly.

A last case has been studied; it is the water-filled shell (rF ¼ 1000 kg=m3) with two identical masses at x1 ¼ x1 ¼ L=2
and y1 ¼ 0:1396 rad, y2 ¼ �0:1396 rad, with large (2.26� 10�3 kgm2) rotary inertia. Results are reported in Table 6 and
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Table 3

Natural frequencies of the shell with two masses of M1 ¼M2 ¼ 0.232kg, Jy,1 ¼ Jy,2 ¼ Jx,1 ¼ Jx,2 ¼ 0.218� 10�3 kgm2 placed at

x1 ¼ x2 ¼ L/2 and y1 ¼ 0.1396 rad, y2 ¼ �0.1396 rad

Mode DIVA (Hz) FEM (Hz) Experiments (Hz)

1 S (local) 57.37 27.01 —

2 A (local) 65.19 28.02 —

3 A (local) 86.20 31.27 —

4 S (local) 88.69 31.54 —

5 A 111.64 104.14 107.3

6 S 125.31 117.42 139.5

7 A 219.74 219.11 216.8

8 S 222.44 222.09 218.6

9 A 246.71 244.65 239.9

10 S 246.88 245.62 244.8

11 A 269.01 266.64 267.4

12 S 282.01 279.97 274.2

Comparison of calculations with DIVA with N ¼ 24 and ~N ¼ 44, commercial FEM code ANSYS and experiments.

A ¼ antisymmetric modes; S ¼ symmetric modes.

Table 4

Natural frequencies of the shell with two masses of M1 ¼M2 ¼ 0.232 kg, Jy,1 ¼ Jy,2 ¼ Jx,1 ¼ Jx,2 ¼ 2.26� 10�3 kgm2 placed at

x1 ¼ x2 ¼ L/2 and y1 ¼ 0.1396 rad, y2 ¼ �0.1396 rad

Mode DIVA (Hz) FEM (Hz) Experiments (Hz)

1 S (local) 18.03 8.60 —

2 A (local) 20.63 8.70 —

3 A (local) 26.78 9.71 —

4 S (local) 27.55 9.79 —

5 A 110.00 104.10 106.6

6 S 124.34 117.37 137.9

7 A 219.70 219.11 216.8

8 S 222.43 222.08 218.4

9 A 246.62 244.64 237.5

10 S 246.85 245.61 241.0

11 A 268.89 266.63 266.8

12 S 281.93 279.96 275.2

Comparison of calculations with DIVA with N ¼ 24 and ~N ¼ 44, commercial FEM code ANSYS and experiments.

A ¼ antisymmetric modes; S ¼ symmetric modes.
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show that the contained water reduces significantly the natural frequencies; it also increases the modal mass, therefore

reducing the effect of added masses.
4. Experiments

Tests have been performed on a commercial circular cylindrical shell made of stainless steel and having a longitudinal

seam weld. The dimensions and material properties of the shell are: L ¼ 520mm, R ¼ 149:4mm, h ¼ 0:519mm,

E ¼ 1:98� 1011 Pa, r ¼ 7850 kg=m3 and n ¼ 0:3. Two stainless-steel annular plates of external and internal radius of

149.4 and 60mm, respectively, and thickness 0.25mm have been welded to the shell ends to approximate the simply

supported boundary conditions of the shell. The shell has been suspended horizontally with cables to a box-type frame

and it has been subjected to impact excitation in order to identify the natural frequencies and perform a modal analysis

by measuring the shell response on a grid of points.
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Table 5

Natural frequencies of the empty shell with two masses of M1 ¼M2 ¼ 0.232 kg placed at x1 ¼ x2 ¼ L/2 and y1 ¼ 0.1396 rad,

y2 ¼ �0.1396 rad, with Jy,1 ¼ Jy,2 ¼ Jx,1 ¼ Jx,2 ¼ J

Mode Frequency (Hz) without rotary

inertia

Frequency (Hz)

J ¼ 0.218� 10�3 kgm2
Frequency (Hz)

J ¼ 2.26� 10�3 kgm2

1 S (local) — 57.37 18.03

2 A (local) — 65.19 20.63

3 A (local) — 86.20 26.78

4 S (local) — 88.69 27.55

5 A 106.77 111.64 110.00

6 S 120.43 125.31 124.34

7 A 219.22 219.74 219.70

8 S 222.21 222.44 222.43

9 A 245.23 246.71 246.62

10 S 246.18 246.88 246.85

11 A 266.81 269.01 268.89

12 S 279.72 282.01 281.93

Calculations with DIVA with N ¼ 24 and ~N ¼ 44. A ¼ antisymmetric modes; S ¼ symmetric modes.

Table 6

Natural frequencies of the water-filled shell with two masses of M1 ¼M2 ¼ 0.232 kg placed at x1 ¼ x2 ¼ L/2 and y1 ¼ 0.1396 rad

y2 ¼ �0.1396 rad, with and without rotary inertia of Jy,1 ¼ Jy,2 ¼ Jx,1 ¼ Jx,2 ¼ 2.26� 10�3 kgm2

Mode Frequency (Hz) without rotary inertia Frequency (Hz) with rotary inertia

1 S (local) — 17.97

2 A (local) — 20.53

3 A (local) — 26.78

4 S (local) — 27.55

5 S 71.82 73.93

6 A 72.18 75.89

7 A 82.47 84.53

8 S 82.63 83.35

9 A 86.80 86.80

10 S 87.21 88.09

11 A 107.56 107.77

12 S 112.42 114.38

Calculations with DIVA with N ¼ 24 and ~N ¼ 44. A ¼ antisymmetric modes; S ¼ symmetric modes.
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Four different cases, corresponding to the numerical calculations, have been considered. First two cases are for one

mass (0.205 kg) at x1 ¼ L=4 with small (90.36� 10�6 kgm2) and large (1.191� 10�3 kgm2) rotary inertia. The other two

cases studied are for two identical masses (0.232 kg) at x1 ¼ x1 ¼ L=2 (i.e. in the middle of the shell) and

y1 ¼ 0:1396 rad, y2 ¼ �0:1396 rad, with medium (0.218� 10�3 kgm2) and large (2.26� 10�3 kgm2) rotary inertia. The

experimental set-up for one of these cases is shown in Fig. 1.

The excitation has been provided by a miniature instrumented hammer B&K 8203. The shell response has been

measured by using the accelerometer PCB 357A08 of 0.16 g. The time responses have been recorded by using the Difa

Scadas II front-end connected to a HP c3000 workstation with the software CADA-X of LMS for signal processing and

modal analysis. Frequency Response Functions (FRFs) have been estimated by using averages of eight measurements

and the HV algorithm.

Experimental results for the four cases are reported in Tables 1–4. The largest difference with respect to calculations

is for mode 3 S in Tables 1 and 2. This is probably due to the finite dimension of the added mass (cylinder) used in the

experiments (see Fig. 1); in the calculation this mass is considered of infinitesimal dimension. In Tables 1 and 2 only

symmetric modes have been measured experimentally.
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Table 7

Effect of rotary inertia on natural frequencies of the shell with two masses of M1 ¼M2 ¼ 0.232kg, Jy;1 ¼ Jy;2 ¼ Jx;1 ¼ Jx;2 ¼ J placed

at x1 ¼ x2 ¼ L/2 and y1 ¼ 0.1396 rad, y2 ¼ �0.1396 rad experimentally measured

Mode J ¼ 0:218� 10�3 kgm2 J ¼ 2:26� 10�3 kgm2

5 A 107.3 106.6

6 S 139.5 137.9

7 A 216.8 216.8

8 S 218.6 218.4

9 A 239.9 237.5

10 S 244.8 241.0

11 A 267.4 266.8

12 S 274.2 275.2

A ¼ antisymmetric modes; S ¼ symmetric modes.

Fig. 1. Experimental shell with two masses with medium rotary inertia.

M. Amabili et al. / Journal of Fluids and Structures 21 (2005) 449–458456
Table 7 shows a comparison of experimental natural frequencies (excluding local modes, that have not been identified

in the modal analysis) of the shell with two masses for the two cases of different rotary inertia. Results show that the

increase of rotary inertia generally reduces natural frequencies but by an extremely small quantity; only modes 5 A and

6 S, which are the ones largely affected by the two added masses (also if rotary inertia is neglected), present a larger

reduction of the order of 1%. Similar reduction is predicted by DIVA, while FEM results show an even smaller effect.
5. Conclusions

The computer code DIVA has been successfully modified to include the effect of rotary inertia of added masses. This

has been done in order to satisfy an industrial application. Results show that the effect of rotary inertia on shells is

negligible in the cases studied [this is in contrast with what has been found for thin plates (Amabili et al., 2005), due to

the geometric stiffness of the circular cylindrical shell], except for two additional local modes, due to the rotational

degrees of freedom, for each mass with rotary inertia. These local modes have low frequency and they can be practically

excited only by the rotation of the added masses; in fact, these modes have not been detected by the experimental modal

analysis performed. These modes can be more conveniently calculated by using a FEM code than by using the
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Rayleigh–Ritz approach of DIVA for their local characteristics; in fact, the Rayleigh–Ritz method is based on global

discretization and in order to capture local modes a very high number of modes in the expansion must be used.
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Appendix A. Mode shapes

The mode shapes for various modes of the shell, some compared with experiment, are given in Table A1.
Table A1

Comparison of computed (DIVA, N ¼ 24, ~N ¼ 44) and experimentally identified mode shapes of the shell with two masses of

M1 ¼M2 ¼ 0.232 kg placed at x1 ¼ x2 ¼ L/2 and y1 ¼ 0.1396 rad, y2 ¼ �0.1396 rad, with rotary inertia of Jy,1 ¼ Jy,2 ¼ Jx,1 ¼

Jx,2 ¼ 2.26� 10�3 kgm2
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A ¼ antisymmetric modes; S ¼ symmetric modes; N.A. ¼ not available in experiments; K, X, & ¼ location of masses.
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